
Hash Table
with

Chaining
CS 251 - Data Structures

and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Hashing and tables working
together

Hash Table

Chaining
Store items in Linked Lists

01

02

3

Hash Table
01

Hashing and tables working together

4

Hash Table

𝑈 (universe of keys)

𝑥1 = 𝑘1, 𝑣1
𝑥3 = 𝑘3, 𝑣3

-

-

𝑥2 or 𝑥4?
-

𝑥5 = 𝑘5, 𝑣5

-

-

-

𝑇

𝐾 (actual keys)

𝑘1 ∙

𝑘2 ∙

𝑘3 ∙

𝑘4 ∙

𝑚 − 1

0

𝑘5 ∙

ℎ 𝑘1
ℎ 𝑘3

ℎ 𝑘5

ℎ 𝑘2 = ℎ 𝑘4

ℎ: 𝑈 → 0,1,2,… ,𝑚 − 1

5

Conventions

ReplaceUnique keys ADT/API

If entry (𝑘, 𝑣)
exists, and we try to
insert 𝑘, 𝑤 , then
(𝑘, 𝑣) is replaced
with (𝑘, 𝑤).

Each key 𝑘 can only
have one value.

Put(key, value)
Get(key)
Delete(key)
Contains(key)
isEmpty()
Size()
Keys()

6

Idea

Hashing procedures will give us big integers

Use modular arithmetic to map their values to specific ranges.

7

Hash Function
ℎ 𝑘: ℤ

ℎ: 𝑈 → 0,1,2,… ,𝑚 − 1

Requirements:

● ℎ(𝑘) always returns the same value
unless 𝑘 changes.

● If 𝑘1 = 𝑘2, then ℎ(𝑘1) = ℎ(𝑘2). Is the
converse true?

● If ℎ(𝑘1) ≠ ℎ(𝑘2), then 𝑘1 ≠ 𝑘2.

● Efficient to compute.

● Distribute keys uniformly.

● “All the bits of the key play an equal
role in computing every hash value.”

Robert, Sedgewick; Wayne Kevin. Algorithms (p. 462). Pearson Education.
8

Division Method
ℎ 𝑘 = 𝑘 mod 𝑚

Goal: map a non-negative integer key 𝑘 into
one of the 𝑚 slots in the table.

WARNING!!!
● If 𝑚 is even, then ℎ(𝑘) is odd or even if

𝑘 is also odd or even, respectively.
● Avoid 𝒎 = 𝟐𝒑. Otherwise, we are only

using the 𝒑 lowest-order bits of 𝒌.
● Avoid 𝒎 = 𝟏𝟎𝒑 if all keys are decimal

numbers.

Better:
● Let 𝑚 be a prime not too close to an

exact power of 2.
● Check your ℎ(𝑘) distributes uniformly in

the table.

9

Multiplication Method
ℎ 𝑘 = 𝑚 𝑘𝐴 mod 1

Goal: map a non-negative integer key 𝑘 into
one of the 𝑚 slots in the table.

● Constant 𝐴 in range 0 < 𝐴 < 1.

● As expected, there are better values for
𝐴 than others. Knuth suggests:

𝐴 ≈
5 − 1

2
= 0.6180339887

● The value of 𝑚 is not that critical. We
can use 𝑚 = 2𝑝.

● Still, check your 𝒉(𝒌) distributes
uniformly in the table.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 263). The MIT Press.
10

Example

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Input:

ℎ(𝑘): For a color name 𝑘, use the
numerical position in the alphabet
of the first letter in 𝑘.

ℎ "yellow" = 25 mod 11 = 3
ℎ "green" = 7 mod 11 = 7
ℎ "purple" = 16 mod 11 = 5
ℎ "blue" = 2 mod 11 = 2

11

Example

∅ ∅ ∅ ∅ ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Insert():

ℎ "magenta" = 13 mod 11 = 2

But T[2] has

Delete():

ℎ "green" = 7 mod 11 = 7
T[7] = null

Search(“blue”):
ℎ "blue" = 2 mod 11 = 2
Return T[2]

12

Collisions

Let 𝑘1 and 𝑘2 be two different keys.
There is a collision in the hash table if
ℎ 𝑘1 = ℎ(𝑘2).

Ideal: Design a collision-free hash
function.

Reality: Hard to design a ℎ(𝑘) that
creates random slot indices from
non-random keys. Assume collisions
will occur.

Solution: Implement collision
management strategies.

13

Collision Management Strategies

Is the slot occupied?
Search for the next one

available.

Multiple items in a slot?
Store them in a Doubly

Linked List.

Open AddressingChaining

01 02

14

Chaining
02

Store items in Linked Lists

15

Luhn, H.P. (1953), A new
method of recording and
searching information.
Amer. Doc., 4: 14-16.

16https://onlinelibrary.wiley.com/doi/10.1002/asi.5090040104

https://onlinelibrary.wiley.com/doi/10.1002/asi.5090040104
https://onlinelibrary.wiley.com/doi/10.1002/asi.5090040104

∅ ∅ pointer pointer ∅ pointer ∅ pointer ∅ ∅ ∅

0 1 2 3 4 5 6 7 8 9 10

Example: Chaining

17

Chaining:
Analysis

Let 𝑛 be the number of keys, and 𝑚 the
number of slots.

● Worst-case: Traversing all items in the
table is 𝑂 𝑛

● Simple Uniform Hashing Assumption:
each key is equally likely to be hashed to
any slot in the table independent of
other keys hashing.

● If ℎ(𝑘) distributes keys randomly, then
the expected length of a list is 𝛼 = 𝑛/𝑚
(aka. Load Factor).

● Runtime: Θ 1 + chain = Θ 1 + 𝛼

● If 𝑛 ∈ 𝑂(𝑚), 𝛼 =
𝑛

𝑚
=

𝑂 𝑚

𝑚
= 𝑂(1)

18
Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 279). The MIT Press.

Do not get confused!

Hashing: a process or technique used to
convert input data of any size into a fixed-
size value or key.

Hash function: a specific algorithm used in
hashing to map data of arbitrary size to data
of a fixed size.

Hash table: a data structure that implements
an associative array abstract data type, a
structure that can map keys to values.

19

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

𝒉 last slide = End

Do you have any questions?

20

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Hash Table with Chaining
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Hash Table
	Slide 5: Hash Table
	Slide 6: Conventions
	Slide 7: Hashing procedures will give us big integers
	Slide 8: Hash Function h open paren k : double-struck cap Z , close paren
	Slide 9: Division Method h of k , equals k , mod , m
	Slide 10: Multiplication Method h of k , equals open floor m open paren k cap A. , mod , 1 , close paren close floor
	Slide 11: Example
	Slide 12: Example
	Slide 13: Collisions
	Slide 14: Collision Management Strategies
	Slide 15: Chaining
	Slide 16: Luhn, H.P. (1953), A new method of recording and searching information. Amer. Doc., 4: 14-16.
	Slide 17: Example: Chaining
	Slide 18: Chaining: Analysis
	Slide 19: Do not get confused!
	Slide 20: bold italic h open paren last , slide , close paren equals End

